SHELXL97 (Sheldrick, 1997). Molecular graphics: XP in SHELXTL (Siemens, 1996b). Software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1244). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Harms, K. (1997). XCAD-4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Release 97-1. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1996a). XPREP in SHELXTL. Program for Data Preparation and Reciprocal Space Exploration. Version 5.05. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). XP in SHELXTL. Molecular Graphics Program. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1997). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 22, 870-878.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1969). Acta Cryst. B25, 328-336.
Warda, S. A. (1994). Bioanorganische Kupfer(II) Komplexe mit dreizähnigen O, N, O Chelat-Dianionen und additiven einzähnigen Donorliganden. Aachen: Verlag Shaker.
Warda, S. A. (1997a). Acta Cryst. C53, 697-699.
Warda, S. A. (1997b). Acta Cryst. C53, 1010-1011.

Acta Cryst. (1998). C54, 189-191

catena-Poly[[(N-salicylideneglycinato$\left.N, O, O^{\prime}\right)$ copper(II) $-\mu$-pyrazine- $N: N^{\prime}$-(N -salicylideneglycinato- $\left.N, O, O^{\prime}\right)$ copper(II)]-$\boldsymbol{\mu}$-1,4-dioxane- $O: O^{\prime}$]

Salam A. Warda
Department of Chemistry, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany. E-mail: warda@ax1501.chemie.uni-marburg.de

(Received 8 July 1997; accepted 3 October 1997)

Abstract

In the title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right.$ $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$], each $\mathrm{Cu}^{\mathrm{II}}$ ion has a square-pyramidal coordination environment with a tridentate N-salicylidene-

glycinato Schiff base dianion and a pyrazine ligand bound in the basal plane. The pyrazine ligand acts as a bifunctional ligand, joining two Schiff base complexes to form a binuclear unit. The apex of the pyramid is occupied by a dioxane O atom at an apical distance of 2.510 (2) \AA. The binuclear units are associated into chains parallel to the x axis through dioxane bridges.

Comment

Recently, a series of copper(II) complexes with tridentate Schiff base (TSB ${ }^{-}$) and monodentate neutral ligands were reported (Warda, 1997); these complexes are suitable for studying the electron paramagnetic resonance (EPR) signal behaviour with respect to the local geometry and cooperative bonding effects. In this communication, a further structure, (I), with dioxane bridges between $\mathrm{Cu}-\mathrm{TSB}$ moieties, is reported.

(I)

In compound (I), the $\mathrm{Cu}^{\text {II }}$ atom has square-pyramidal geometry; the basal sites are occupied by the O, N, O^{\prime} donor set of the N -salicylideneglycinato dianion and an N atom of the pyrazine ligand. The pyrazine lies on an inversion centre and acts as a bifunctional ligand, connecting two $\mathrm{Cu}-\mathrm{TSB}$ molecules to form a binuclear copper(II) unit. The dioxane rings lie on inversion centres and are apically coordinated via both donor sites at a distance $(\mathrm{Cu}-\mathrm{O} 4)$ of $2.510(2) \AA$; thus, a chain structure is formed parallel to the crystallographic x axis (Fig. 2). The $\mathrm{Cu}^{\mathrm{II}}$ atoms are slightly shifted [by $0.029(1) \mathrm{A}]$ from the base of the pyramid (mean plane of $\mathrm{N} 1, \mathrm{O} 1, \mathrm{~N} 2$ and O 2); the pyrazine ligand forms an interplanar angle of $16.6(3)^{\circ}$ with the basal plane. Between the chains, the copper(II) polyhedra are tilted with respect to each other by an angle of $25.6(2)^{\circ}$; the $\mathrm{Cu} \cdots \mathrm{Cu}(1-x, 1-y,-z)$ distance between two differently oriented polyhedra is 7.475 (1) \AA (PLATON; Spek, 1994).

EPR patterns of the title compound display a coupled g tensor, indicating a distorted ferrodistortive ordering ($45^{\circ}>2 \gamma>0$); the tilting angle calculated from the EPR powder spectrum is 25° (2γ is the angle describing the orientation of the main axes of the polyhedra with

Fig. 1. The dicuprate unit of the title compound, with the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level; H atoms are represented by circles of arbitrary size. Atom labels appended by a are related by the symmetry operation $2-x, 1-y, z$. Further coordination of the dioxane $\mathrm{O} 4 a$ atom and its symmetry equivalents is not shown.

Fig. 2. Packing diagram of the title compound displaying the chains propagating along the crystallographic x axis.
respect to one another and should therefore be carefully distinguished from the cell parameter with the same label). The orthorhombic symmetry component of the \mathbf{g} tensor is remarkably high.

In the case of monomeric (pyrazine)(N-salicyl-idene- α-amino-2-methylpropanoato)copper(II) reported recently (Warda, 1997) and synthesized in the same way as (I), the pyrazine ligand is monofunctional and the copper(II) coordination geometry is square planar.

Experimental

The title compound was synthesized from aqua(N-salicylideneglycinato)copper(II) hemihydrate (Ueki et al., 1967; Warda, 1994) and pyrazine in dioxane-water (1:2).

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right.$ -

$$
\left.\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)\right]
$$

$M_{r}=649.58$
Monoclinic
$P 2_{1} / c$
$a=8.5214$ (7) Å
$b=15.3737(18) \AA$
$c=9.9845(5) \AA$
$\beta=100.905(5)^{\circ}$
$V=1284.4(2) \AA^{3}$
$Z=2$
$D_{x}=1.680 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction:
ψ scans (Siemens, 1996a)
$T_{\text {min }}=0.577, T_{\text {max }}=0.922$
2368 measured reflections
2234 independent reflections
1907 reflections with
$I>2 \sigma(I)$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=17.54-21.41^{\circ}$
$\mu=1.715 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.36 \times 0.12 \times 0.05 \mathrm{~mm}$ Dark green

$$
\begin{aligned}
& R_{\text {int }}=0.010 \\
& \theta_{\max }=24.97^{\circ} \\
& h=-10 \rightarrow 9 \\
& k=0 \rightarrow 18 \\
& l=0 \rightarrow 11 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.090$
$S=1.080$
2234 reflections
181 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0564 P)^{2}\right. \\
& +0.4624 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.605 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.439 \mathrm{e}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O} 1$	$1.8918(18)$	$\mathrm{Cu}-\mathrm{N} 2$	$2.032(2)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.920(2)$	$\mathrm{Cu}-\mathrm{O} 4$	$2.510(2)$
$\mathrm{Cu}-\mathrm{O} 2$	$1.9357(18)$		
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 1$	$94.24(9)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	$91.52(8)$
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{O} 2$	$177.73(9)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 4$	$94.71(8)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 2$	$84.83(8)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 4$	$93.24(8)$
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 2$	$89.35(9)$	$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 4$	$87.42(8)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$176.13(9)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{O} 4$	$87.88(8)$

All H atoms were found from difference-Fourier syntheses and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom). The residual electron density and the deepest hole of 0.605 and $-0.439 \mathrm{e} \AA^{-3}$, respectively, are close to the Cu atom at distances of 1.12 and $0.84 \AA$, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994). Cell refinement: CAD-4 EXPRESS. Data reduction: XCAD-4 (Harms, 1997). Program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XP in SHELXTL (Siemens, 1996b). Software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1247). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Harms, K. (1997). XCAD-4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Release 97-1. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1996a). XPREP in SHELXTL. Program for Data Preparation and Reciprocal Space Exploration. Version 5.05. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). XP in SHELXTL. Molecular Graphics Program. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1994). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Ueki, T., Ashida, T., Sasada, Y. \& Kakudo, M. (1967). Acta Cryst. 22, 870-878.
Warda, S. A. (1994). Bioanorganische Kupfer(II) Komplexe mit dreizähnigen O, N, O Chelat-Dianionen und additiven einzähnigen Donorliganden. Aachen: Verlag Shaker.
Warda, S. A. (1997). Acta Cryst. C53, 1186-1188.

Acta Cryst. (1998). C54, 191-193

\{2-[2-(Salicylideneaminomethyl)phenyl-iminomethyl]phenolato(2-)- $\left.N, N^{\prime}, O, O^{\prime}\right\}$ copper(II)

Yoshiyuki Kani, ${ }^{a}$ Shigeru Ohba, ${ }^{a}$ Takashi Ishikawa, ${ }^{b}$ Masatomi Sakamoto ${ }^{b}$ and Yuzo Nishida ${ }^{b}$
${ }^{a}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-I, Kohoku-ku, Yokohama 223, Japan, and ${ }^{b}$ Department of Chemistry, Faculty of Science, Yamagata University, Yamagata 990, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 25 July 1997; accepted 15 October 1997)

Abstract

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$ or [$\mathrm{Cu}-$ (salabza)], the six-membered diamine chelate ring moiety takes a skew-boat form with $\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{C}$ torsion angles of $-47.2(4)$ and $-59.6(3)^{\circ}$. The geometry around the Cu atom is tetrahedrally distorted from square planar. The dihedral angle between the two CuNO planes is $29(1)^{\circ}$, and those between the CuN_{2} and CuNO planes are $19(1)$ and $21(1)^{\circ}$.

Comment

The tetradentate Schiff base ligand derived from salicylaldehyde and 2-amino-1-benzylamine is abbreviated as H_{2} (salabza). The $\mathrm{Mn}^{\text {HI }}$ complex [Mn (salabza) Cl] shows high activity for dioxygen activation in the presence of cyclohexanecarboxaldehyde (Suzuki et al., 1997). The corresponding $\mathrm{Cu}^{\mathrm{II}}$ complex, $[\mathrm{Cu}($ salabza $)$, (I), was prepared, but it has low activity as a catalyst. This may indicate little formation of an octahedral acylperoxo complex, $[\mathrm{Cu}(\text { salabza })\{\mathrm{OC}(R) \mathrm{OO}\}]^{-}$, from [Cu (salabza)], dioxygen and aldehyde $\left[\mathrm{OC}(R) \mathrm{OO}^{-}\right.$is a bidentate peroxo ligand with an alkyl group R].

(I)

The present crystal structure analysis of [$\mathrm{Cu}($ salabza $)]$ shows that there is a tetrahedral distortion of the coordination plane around the Cul atom which can be quantified by the $\mathrm{O} 2-\mathrm{N} 5-\mathrm{N} 4-\mathrm{O} 3$ coordination torsion angle of $26.8(2)^{\circ}$ as well as by the trans $-\mathrm{N}-\mathrm{Cu}-$ O bond angles of $157.8(2)$ and $160.3(2)^{\circ}$, which are much less than the sum of the $\mathrm{N}-\mathrm{Cu}-\mathrm{N}$ and one of the

